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Abstract

Adaptive Resonance Theory (ART) networks are employed in robot behavior learning. Two of the difficulties in online robot behavior

learning, namely, (1) exponential memory increases with time, (2) difficulty for operators to specify learning tasks accuracy and control

learning attention before learning. In order to remedy the aforementioned difficulties, an adaptive categorization mechanism is introduced in

ART networks for perceptual and action patterns categorization in this paper. A game-theoretic formulation of adaptive categorization for

ART networks is proposed for vigilance parameter adaptation for category size control on the categories formed. The proposed vigilance

parameter update rule can help improving categorization performance in the aspect of category number stability and solve the problem of

selecting initial vigilance parameter prior to pattern categorization in traditional ART networks. Behavior learning using physical robot is

conducted to demonstrate the effectiveness of the proposed adaptive categorization mechanism in ART networks.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Robot behavior learning has been an emerging research

topic for nearly two decades and fruitful results have been

obtained through the effort of researchers. Various learning

methodologies and techniques have been developed for

robot learning (Connell & Mahadevan 1993; Franklin,

Mitchell, & Thrun, 1996). However, existing results focus

only on learning specific tasks on specific problem domains.

Prior knowledge of the learning tasks, like robot dynamic

and behavior models and the nature of the tasks that the

robots are going to learn, is incorporated into the derivation

of learning algorithms or the design of learning

architectures. Some algorithms also impose restricted

assumption on the learning tasks so as to simplify the

learning processes and architectural design for robots.

The developed learning algorithms and learning architec-

tures are then task-dependent and problem-dependent.

Our work, on the other hand, focuses on developing

task-independent and problem-independent robot behavior

learning techniques.

A robot behavior can be considered as a sensorimotor

mapping from robot perceptual space to action space

(Fung & Liu, 1998). The perceptual space is constructed

from possible sensor data patterns while the action space is

constructed from possible robot commands to drive robot

motion. Since the perceptual space and action space are

high-dimensional and continuous spaces, it is difficult to

construct the whole sensorimotor map for each particular

situation and action pair from finite number of training data

patterns. In order to approximate this sensorimotor map,

the perceptual and action spaces are divided into several

categories (clusters) and mapping between the categories on

the two spaces can be constructed. Within each category,

situations (or actions) are similar in nature since it is

assumed that similar situations (stimuli) invokes similar

actions. The construction of sensorimotor map for particular

behavior is then simplified from a high dimensional,

nonlinear and discontinuous mapping to a set of simple

category mapping (Fung & Liu, 1998). A generic

neural network based architecture, called the Behavior

Learning/Operating Modular (BLOM) Architecture, for
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robot behavior learning is employed to construct category

mappings for behavior learning (Fung & Liu, 1998).

The BLOM architecture consists of two sets of

categorization networks in the perceptual and action

domains (implemented by Fuzzy ART networks (Carpenter,

Grossberg, & Rosen, 1991a) connected by a set of

associative memories (implemented by Fuzzy Associative

Memories FAM (Kosko, 1992). The categorization

networks in the BLOM architecture are responsible for

individual categorization of the input sensor data patterns

(S-patterns) and action patterns (A-pattern). ART networks,

thus, play an important role in robot behavior learning and

enhancements (adaptive categorization) on ART networks

benefit the behavior learning process.

Two of the difficulties arise in robot online behavior

learning and they are described in the followings:

(1) When a robot is situated in an environment for

operation, novel situations will usually be encountered by

the robot when it interacts with its environment. The robot,

which is capable of online learning, should update its

knowledge-base with the novel situations as input stimuli.

The robot knowledge-base should be updated incrementally

and without overwriting any learned knowledge. The size of

the knowledge-base will then expand with time as the robot

starts to interact with the environment. The memory

requirement of the robot knowledge-base during the

learning process increases exponentially with time.

This memory explosion phenomenon burdens the launch

of incremental learning capability of the robot.

(2) In general, the robot perceptual space is a high

dimensional, continuous, and space and the sensorimotor

map constructed from behavior learning is nonlinear and

discontinuous. It is impossible to construct the exact

sensorimotor map from existing behavior learning methods.

Approximation techniques are introduced in the mapping

establishment, including partitioning or categorizing the

input and output domains of the mapping. However, it is

difficult for operators to specify the accuracy of behavior

learning approximation and in a priori. Moreover, attention

control in learning provides balanced utilization of

resources (memory and computational effort) during

learning. For instance, subspaces in a robot perceptual

space can be categorized in a fine (coarse) scale when the

robot pays much (less) attention into the particular area and

vice versa.

In order to remedy the aforementioned difficulties in

behavior learning, an adaptive categorization mechanism

is developed for ART networks for perceptual and

action patterns categorization by changing vigilance

parameter r: ART networks refer to all neural networks

developed based on the Adaptive Resonance Theory

proposed by Grossberg and Carpenter in mid 1980s,

including ART 1 (Carpenter & Grossberg, 1987a), ART 2

(Carpenter & Grossberg, 1987b), Fuzzy ART (Carpenter

et al., 1991a), and their variants. This mechanism can be

easily incorporated into all ART networks, including Fuzzy

ART networks. The notion of adaptive categorization is first

introduced to ART networks so that the granularity of

categorization can be adjusted during learning for the

adaptation to the dynamic environment of data patterns.

Existing methods just blindly increase the vigilance

parameter by a fixed amount when all committed F2

neurons are exhausted (Vlajic & Card, 1998). This approach

will eventually set vigilance parameter to 1 and as a result

Nomenclature

GAC adaptive categorization game

LðiÞ
AC learning automaton associated with the ith

F2 neuron

S state set {R, r, f}

n total number of F2 neurons

k number of F2 neurons in RESET state

I ðtÞ index set of F2 neurons in states RESON-

ANCE and RESET after the t-th pattern

presentation and I j is the j-th element of

I ðtÞ

ri vigilance parameter of the ith F2 neuron

rpi updated vigilance parameter, rp ¼

½rpI i
;…; rpI zkþ1

�T [ Rkþ1

mi matching score for the ith F2 neuron

b
ðiÞ
VT cost coefficient of the cost function of

attending Vigilance Test for the ith F2

neuron and bVT W ½b
ð1Þ
VT;b

ð1Þ
VT;…;b

ðkþ1Þ
VT �T [

Rkþ1

p(i) payoff function of the ith F2 neuron

p
ðiÞ
R ;pðiÞ

r ;p
ðiÞ
f net gain of the ith F2 neuron at states

RESONANCE, RESET and FAIL, respect-

ively

C;J coefficient matrices in Nash equilibrium

relationship between ðrp; bVTÞ pair

X three-dimensional unit simplex

j
ðiÞ
R ; jðiÞr ; j

ðiÞ
f state probabilities for the ith F2 neuron in

states RESONANCE, RESET and FAIL,

respectively

pðiÞ
uv state transition probability of the ith F2

neuron from statesu tosv;wheresu,sv [ S

qðiÞ
vu confirmatory state transition probability of

the ith F2 neuron from state su to sv, where

su, sv [ S

ui reinforcement signal received by the ith F2

neuron, ui [ { 2 1; 0; 1}

a, b learning rates for LðiÞ
AC

xR; xr; xf reward strengths for a F2 neuron in states
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any new pattern will form its own cluster. In order to solve

the problem, we propose a game-theoretic formulation on

the adaptive vigilance parameter strategy in ART networks

in this paper. We formulate the adaptive ART categorization

mechanism as an adaptive categorization game GAC in

which the vigilance parameter is updated based on the Nash

Equilibrium of GAC : The granularity of categorization can be

adjusted during learning for the adaptation to the dynamic

environment of data patterns. To study the asymptotic

behavior of the game GAC ; learning automata theory is also

introduced in the repeated game analysis of the game GAC:

The proposed approach only leads to minor modifications

(Section 3) to the original design of ART networks.

Moreover, the modification method is independent of the

fundamental categorization mechanism of ART networks.

The game-theoretic vigilance adaptation strategy improves

the clustering performance of ART networks in the aspect of

category number stability, despite of the prespecified initial

vigilance parameter is. Therefore, it is possible to avoid the

problem of choosing suitable vigilance parameter in

advance or data categorization by the trial-and-error

approach. In other words, the proposed adaptive categoriz-

ation mechanism for ART networks can remedy the two

listed difficulties in behavior learning using the BLOM

architecture.

This paper is organized as follows. Section 2 gives a brief

introduction to a general architecture of ART networks.

Section 3 describes the proposed game-theoretic

formulation of adaptive categorization mechanism in ART

networks and its properties. Moreover, Section 4 presents

the ART networks based BLOM architecture for robot

behavior learning and behavior learning experiments to

show the effectiveness of adaptive categorization in

behavior learning. In additions, Section 5 gives the

conclusions of the paper.

2. ART networks

Since mid 1980s, Grossberg, Carpenter and their

colleagues have proposed a series of ART networks based

on the Adaptive Resonance Theory, which include ART-1

(Carpenter & Grossberg, 1987a) for binary inputs, ART-2

(Carpenter & Grossberg, 1987b) and Fuzzy ART (Carpenter

et al., 1991a) for both binary and analog inputs, ARTMAP

(Carpenter, Grossberg, & Reynolds, 1991b) and Fuzzy

ARTMAP (Carpenter, Grossberg, Markuzon, Reynolds, &

Rosen, 1992) for association between two data sets.

ARTMAP and Fuzzy ARTMAP are supervised learning

networks with two ART networks connected by a map

field of neurons for associations establishment between

categories formed from the two ART networks (Carpenter

et al., 1991b).

Basically, ART networks form a class of self-organizing,

self-stabilizing and self-scaling unsupervised competitive

neural networks for categorization. ART networks solve

the Stability–Plasticity Dilemma, which is also faced by

other categorization and learning systems. The learned

categorization codes are stable to resist the erosion of

irrelevant data while being sensitive to novel data patterns.

These features enable ART networks to be a powerful tool

for incremental categorization learning, which is an

important feature for on-line learning tasks. The granularity

of the clusters (categories) is controlled by a fixed scalar

parameter called vigilance parameter r [ ½0; 1�: The higher

the vigilance parameter, the higher the granularity of the

categories formed by ART networks.

In general, an ART network consists of two fully

interconnected neuronal layers (as shown in Fig. 1 called

F1 and F2; respectively. The F1 layer is responsible for

contrast enhancement and noise suppression on input data

patterns. The number of F1 neurons equals to the input

pattern dimension m while the number of F2 neurons reflects

the capacity of categories (clusters) supported by the

network n (Fig. 1). The F2 layer forms a winner-take-all

competitive layer. There are two sets of weights (long term

memory (LTM)) connecting both the F1 and F2 layers,

namely bottom-up weight ðF1 ! F2Þ and top-down weight

ðF2 ! F1Þ; respectively. The LTM represents the template

feature vectors of the corresponding category. The neuronal

activations are called short term memory (STM).

When a data pattern is passed to an ART network via F1

layer, the activation pattern (STM) of F1 neurons is gated

by the bottom-up weights and is passed to F2 layer. The F2

neuron, that has the maximum matching score with the input

pattern, is identified by the Matching Score test (MST).

The activation pattern of the winning F2 neuron (category),

which is then gated by the top-down weights, is passed back

to F1 layer. This gated F2 STM compares with the F1 STM

and the Vigilance Test (VT) follows. If they match with a

level above a given vigilance level r; the network is said

to be in resonance state and learning occurs by updating

the winning (committed) cluster template vectors with the

corresponding F1 STM. If the match level is below

Fig. 1. Schmematics of ART networks.
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the vigilance level, a reset signal is generated to the F2 layer

and the winning F2 neuron is deactivated. The search for

winning F2 neurons continues until the match level is above

the defined r and learning is conducted. The complicated

reset mechanism in the two level competitive clustering is

governed by ‘ 2
3

rule’ conducted in the gain control nodes

(as shown in Fig. 1) (Carpenter & Grossberg, 1987a).

3. Adaptive categorization in ART networks

According to the above discussion, the granularity of data

categories is controlled by the vigilance parameterr:Original

ART networks only use fixed vigilance parameter for all

clusters and thus only fixed size clusters are formed.

Fixed size clusters are difficult to represent thoroughly the

data subspace and misclassification often happens in

categorization-based classification.1 On the other hand,

variable size clusters, that are generated by adaptive vigilance

parameter mechanism, have the capability of approximating

data pattern subspace well and rendering decision

boundaries, and thus misclassification can be avoided.

Moreover, adaptive categorization helps preventing

misclassification with data patterns from disjoint

distributions. In additions, attention selectivity can be

achieved by adaptive categorization so that fine clustering

is applied on important data subspace while coarse clustering

is applied on less important regions of the data pattern space.

No mathematical formulation for r-adaptation has been

proposed for ART networks in literatures. Few papers

discussed varying vigilance parameters during categorization

and they only suggest to blindly increase vigilance parameter

by a fixed amount until all available F2 neurons are exhausted

(reset) for each data presentation (Vlajic & Card, 1998).

One problem of this strategy is that each data pattern will be

assigned to individual category eventually. In order to solve

this problem, this paper proposes a vigilance parameter

adaptation mechanism to adaptive categorization in ART

networks.

We have made two modifications on classical ART

networks so as to achieve adaptive categorization in ART

networks, namely,

(1) The ART network assigns each F2 neuron an individual

vigilance parameter ri; where i ¼ 1; 2;…; n; instead of

assigning only one vigilance parameter for all F2

neurons; and

(2) The individual vigilance parameterri for each F2 neuron

is adaptively changed based on the game-theoretic

formulation on the competitive clustering mechanism

in ART networks during categorization process.

3.1. Game-theoretic formulation

The competitive clustering mechanism in ART networks

is formulated as an infinite n-person non-cooperative game.

Game-theoretic analysis has been a popular technique in

analyzing economic phenomena and strategies and human

behaviors in complex systems. Game theory (Fudenberg &

Tirole, 1991) is a mathematical technique for finding

optimal (or sub-optimal) policy for individual agents with

conflicting goals interacting in the same environment.

Since most of the clustering algorithms, including ART

networks, are competitive learning in nature, it is natural to

employ game theory for analysis. The conflict exists in the

ART adaptive categorization is that all F2 neuron tries to

have the presented data pattern categorized into the cluster it

is representing. Vigilance parameter r adaptation strategy

will be derived based on the Nash Equilibrium of the game-

theoretic formulation of ART networks.

Each F2 neuron is modeled as an individual player

(decision maker) in the (adaptive) ART clustering process.

An infinite non-cooperative n-persons game GAC is

defined as a triplet, GAC ¼ ðP; {RðiÞ}i[P; {pðiÞ}i[PÞ; where

P ¼ {1; 2;…; n}; which is the index set of all players of the

game GAC; RðiÞ is the strategy set of the ith player and pðiÞ is

the payoff function for the ith player. The vigilance

parameter for each F2 neuron forms its strategy ri [ RðiÞ

in ART networks and ri is usually bounded in ½0; 1�: pðiÞ is

defined on the Cartesian product of the strategy sets of the

players R ¼
Q

i[P RðiÞ and pðiÞ : R 7! R:

As mentioned previously, each F2 neuron must attend

two independent tests for each pattern presentation:

the matching score test (MST) and the vigilance test (VT).

F2 neurons can be classified into three groups when a data

pattern is presented to an ART network according to three

possible states:

Resonance state. Only one F2 neuron is in the resonance

state. This resonant F2 neuron has passed both the

matching score test and the vigilance test. The presented

data pattern is assigned to the category represented by

this particular F2 neuron.

Reset state. Neurons in the reset state have passed the

matching score test but failed the vigilance test.

Denote the number of neurons is in the reset state

by k.

Fail state. Neurons in the fail state have failed both

the matching score test and the vigilance test. There are

ðn 2 k 2 1Þ F2 neurons in this state.

In other words, each F2 neuron is in one of the three

possible states in the set

S ¼ {RESONANCE ðRÞ;RESETðrÞ;FAILðfÞ}

after every data presentation (Fig. 2). In our algorithm,

only F2 neurons, that are in states RESONANCE or RESET

may have their vigilance parameters updated for next

1 A categorization-based classifier is usually constructed by a

categorization network, like ART networks, and a discrimination network

that maps the categories formed into different classes for particular

application.
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pattern presentation. The r-adaptation strategy then depends

only on vigilance test mechanism. If a pattern is categorized

with direct access (no F2 neuron is in RESET state),

no update on vigilance parameters will be conducted.

The basic derivation steps of adaptive categorization GAC

follows the Cournot game for oligopolic market model

(Fudenberg & Tirole, 1991). The adaptive categorization

scenario of ART networks is analogous to an oligopoly

market, with the F2 neurons corresponding to companies

involved in the market and vigilance parameters of F2

neurons corresponding to the prices of the products of the

companies involved. Each F2 neuron incurs costs when it

attends the matching score test and the vigilance test and

acquires rewards if it passes the tests. In the matching score

test, the cost incurred and reward received by a F2 neuron

depend only on the matching score mi of that F2 neuron.

On the other hand, the cost incurred and reward received by

a F2 neuron depend only on the vigilance parameter ri of

that F2 neuron in the vigilance test. The incurred costs of the

matching score test cðiÞMST and the vigilance test cðiÞVT by the ith

F2 neuron form linear relations with mi and ri; respectively,

as follows,

cðiÞMST ¼ aMST þ bMSTmi ð1Þ

cðiÞVT ¼ aVT 2 b
ðiÞ
VTri ð2Þ

where aMST; bMST; aVT and b
ðiÞ
VT are positive constants.

The cost cðiÞVT increases with decreasing ri as the F2 neurons

are encouraged to have fine clustering (high r) for better

approximation to data subspace. The rewards of the

matching score test rðiÞMST and the vigilance test rðiÞVT obtained

by the ith F2 neuron, on the other hand, are given as

rðiÞMST ¼ mi ðn 2 1Þmi 2
X
j–i

mj

0
@

1
A ð3Þ

rðiÞVT ¼ rho;i
X

j[I ðtÞ
j–i

rj 2 kri

0
BBB@

1
CCCA ð4Þ

where n is the total number of F2 neurons involved in

categorization and k is the number of F2 neurons in

RESET state.

Each F2 neuron will try its best to win the matching score

test and tend to put as small effort (ri) as possible to win the

vigilance test. The reward rðiÞVT and cost cðiÞVT functions for

the vigilance test demonstrate conflicting goals in the

game-theoretic formulation. The net gain of F2 neurons in

the state si [ S are then given as follows,

p
ðiÞ
R ¼ ðrðiÞVT 2 cðiÞVTÞ þ ðrðiÞMST 2 cðiÞMSTÞ

pðiÞ
r ¼ 2cðiÞVT þ ðrðiÞMST 2 cðiÞMSTÞ

p
ðiÞ
f ¼ 2cðiÞMST

ð5Þ

Denote the state of the ith F2 neuron at the tth pattern

presentation by sðiÞðtÞ and let I ðtÞ , P be the index set of F2

neurons in states RESONANCE or RESET after the

tth pattern presentation, that is I ðtÞ ¼ {ilsðiÞðtÞ ¼ R} <
{ilsðiÞðtÞ ¼ r}: The payoff function pðiÞ of the ith ði [ I ðtÞÞ

F2 neuron at the tth pattern presentation is then defined as

the expected gain of that F2 neuron in the three possible

states at the ðt þ 1Þ-th pattern presentation,

pðiÞðtÞ ¼ ProbðsðiÞðtÞ ¼ RÞp
ðiÞ
R ðtÞ þ ProbðsðiÞðtÞ ¼ rÞpðiÞ

r ðtÞ

þ ProbðsðiÞðtÞ ¼ fÞpðiÞ
f ðtÞ ð6Þ

where Probð·Þ denotes the probability of the given outcome.

3.2. State probability dynamics of F2 neuron

A learning automaton LðiÞ
AC ; i ¼ 1; 2;…; n; is constructed

for each F2 neuron to track the variations of state

probabilities with time. A learning automaton (Narendra &

Thathachar, 1989) is basically a feedback variable structure

stochastic automaton system (Narendra & Thathachar,

1989) acting in an unknown stochastic environment so as

to improve its performance under certain criteria.

The learning automaton LðiÞ
AC in the adaptive categorization

game GAC for each F2 neuron consists of the following:

(1) a set of internal states S ¼ {R; r; f};

(2) a set of output actions O ¼ {R; r; f};

(3) a set of input reinforcement signals uðiÞ [ Q ¼

{ 2 1; 0; 1};

(4) a state transition probability matrix P [ R3£3 that

determines the state transition of LðiÞ
AC at the next

instant according to the current state. In other words,

each element pðiÞ
uv in matrix P is defined as the

conditional probability of LðiÞ
AC in state sv at time

ðt þ 1Þ (or the ðt þ 1Þ-th pattern presentation) given

Fig. 2. State transitions of a F2 neuron with each arc representing the state

transition probability pðiÞuv:
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that it is in state su at time t, pðiÞ
uv W ProbðsðiÞðt þ 1Þ ¼

svlsðiÞðtÞ ¼ suÞ;

(5) a reinforcement scheme R for action probability

update.

In our formulation of LðiÞ
AC; the action set O is the same

as the state set S and each state can only have action that is

the same as its state. Therefore, the corresponding output

mapping G : S!O is an identity and state probability

jðiÞu ðtÞ W ProbðsðiÞðtÞ ¼ suÞ is equivalent to the action

probability. The state of a F2 neuron is reflected in the

state of learning automaton associated to it. The learning

automaton associated for each F2 neuron can then be

characterized by a quadruple LðiÞ
AC ¼ {S;Q;P;R}:

Fig. 3 depicts the interactions between the game GAC or

learning automaton and the environment. The environment

is assumed to generate data patterns that the ART network

will categorize. The environment is a so-called Q-model

environment (Narendra & Thathachar, 1989) as it generates

a finite set of discrete reinforcement signals (i.e. the set Q is

finite) and lQl . 2: The purpose of reinforcement signal,

which depends on the current state sðiÞðtÞ [ S of LðiÞ
AC; is to

guide the state probability adjustment according to

the tracking capability of the learning automaton to its

environment.

Reinforcement scheme R of the learning automaton LðiÞ
AC

of the ith F2 neuron provides the update rule for state

probabilities. The updated state probability depends on the

current state probability jðiÞu ðtÞ; current state sðiÞðtÞ and

reinforcement signal uðiÞðtÞ received. By the conditional

probability theory, the state probability at the next instant

jðiÞv ðt þ 1Þ W ProbðsðiÞðt þ 1Þ ¼ svÞ is given as

jðiÞv ðtþ1Þ¼
X
su[S

{ProbðsðiÞðtþ1Þ¼svlsðiÞðtÞ¼suÞ

£ProbðsðiÞðtÞ¼suÞ}¼
X
su[S

pðiÞ
uvj

ðiÞ
u ðtÞ ð7Þ

Before describing the reinforcement scheme for the learning

automata, we define the following concepts. The state space

of state probability in LAC is a three-dimensional unit

simplex and is defined as X¼{jl
P

su[Sju ¼1; 0# ju #

1;su [S} and the confirmatory transition probability qðiÞ
vu;

which is defined as

qðiÞ
vu WProbðsðiÞðtÞ¼sulsðiÞðtþ1Þ¼svÞ

¼pðiÞ
uv

ProbðsðiÞðtÞ¼suÞ

ProbðsðiÞðtþ1Þ¼svÞ
¼pðiÞ

uv

jðiÞu ðtÞX
su[S

pðiÞ
uvj

ðiÞ
u ðtÞ

ð8Þ

from the Bayes Theorem and Eq. (7). The reinforcement

signal uðiÞ; reflecting the tracking performance of the

learning automaton on its situated environment, is defined

based on the state transition probabilities pðiÞ
uv and qðiÞ

vu;

uðiÞ ¼

21; if sðiÞ ¼ argmin
su[S

X
sv[S

pðiÞ
uvqðiÞ

vu

1; if sðiÞ ¼ argmax
su[S

X
sv[S

pðiÞ
uvqðiÞ

vu

0; otherwise

8>>>>><
>>>>>:

ð9Þ

The sum-and-product term
P

sv[SpðiÞ
uvqðiÞ

vu measures the

amount of evidence that supports the transition from state

su at the tth pattern presentation to state sv at the ðtþ1Þ-th

pattern presentation. If the value of this sum-and-product is

high (low), we believe that the learning automaton LAC can

(cannot) somehow predict the state transition of the

corresponding F2 neuron and LðiÞ
AC is reinforced with

u¼1 (punished with u¼21) and vice versa.

The general reinforcement scheme for state probabilities

is given as follows,

jðiÞu ðtþ1Þ¼

jðiÞu ðtÞ2 1
2
ð1þuðiÞÞguðj

ðiÞÞ

þ1
2
ð12uðiÞÞhuðj

ðiÞÞ; ifsðiÞðtÞ–su

jðiÞu ðtÞþ 1
2
ð1þuðiÞÞ

X
sv–su

gvðj
ðiÞÞ

21
2
ð12uðiÞÞ

X
sv–su

hvðj
ðiÞÞ ifsðiÞðtÞ¼su

8>>>>>>>>>><
>>>>>>>>>>:

ð10Þ

where guðj
ðiÞÞ and huðj

ðiÞÞ are the reward and penalty

functions, respectively, and they are nonnegative and

continuous functions X 7 !ð0;1Þ for su[S (Narendra &

Thathachar, 1989). In order to guarantee that jðiÞðtþ1Þ[X;

we have

0,guðj
ðiÞÞ,jðiÞu ;

0,
X

sv–su

ðhvðj
ðiÞÞþjðiÞv Þ,1;

8><
>: ;su[S ð11Þ

(Narendra & Thathachar, 1989). One of the common linear

reward and penalty functions pair, which satisfies all the

aforementioned requirements in Eq. (11), is given as with
Fig. 3. Feedback connection of Adaptive Categorization Game G

ðiÞ
AC of the

ith F2 neuron.
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scalar learning rates 0,a,1 and 0,b,1;

guðj
ðiÞðtÞÞ¼ajðiÞu ðtÞ

huðj
ðiÞðtÞÞ¼bð1

2
2jðiÞu ðtÞÞ

(Narendra & Thathachar, 1989). Then the reinforcement

scheme R for learning automaton LðiÞ
AC becomes

jðiÞu ðtþ1Þ

¼

jðiÞu ðtÞ2 1
2
að1þuðiÞÞjðiÞu ðtÞ

þ 1
2
bð12uðiÞÞð 1

2
2jðiÞu ðtÞÞ; if sðiÞðtÞ–su

jðiÞu ðtÞþ 1
2
að1þuðiÞÞð12jðiÞu ðtÞ

2 1
2
bð12uðiÞÞjðiÞu ðtÞ if sðiÞðtÞ¼su

8>>>>>>><
>>>>>>>:

ð12Þ

3.3. r Adaptation—Nash equilibrium of GAC

The payoff function pðiÞðtÞ of the i-th ði [ I ðtÞ F2 neuron

can be derived from Eqs. (1)–(6) and is given as

pðiÞðtÞ ¼ j
ðiÞ
R

X
j–i

rj 2 kri

0
@

1
Ari þ ðj

ðiÞ
R þ jðiÞr Þb

ðiÞ
VTri

þAðaVT;aMST;bMST; j
ðiÞ
R ; jðiÞr ; j

ðiÞ
f Þ ð13Þ

where A is an expression that is independent of ri: The Nash

equilibrium of the adaptive categorization game GAC can be

deduced easily from the best response function of each

player (F2 neuron). The best response function of the ith F2

neuron gives the best reply to strategies �ri ¼ rw ri of other

F2 neurons (Fudenberg & Tirole, 1991). The best response

function of a F2 neuron gives its best expected

payoff according to the strategies (vigilance parameters)

of the other F2 neurons. The best response function of the

ith F2 neuron is then given by setting ›pðiÞ=›ri ¼ 0; where

i [ I ðtÞ;

›pðiÞ

›ri

¼ 22kjðiÞR ri þ j
ðiÞ
R

X
j–i

rj þ b
ðiÞ
VTðj

ðiÞ
R þ jðiÞr Þ ð14Þ

Setting ›pðiÞ=›ri ¼ 0; we have a linear equation system of

lI ðtÞl ¼ k þ 1 equations,

2krpi 2
X
j–i

rpj ¼ b
ðiÞ
VT 1 þ

jðiÞr

j
ðiÞ
R

 !
; j [ I ðtÞ ð15Þ

The Nash equilibrium rp of GAC is defined as a strategy that

satisfies the best response functions of all players so that

strategies of the i-th F2 neuron ði [ I ðtÞÞ are the best replies

to the strategies �ri of each other players. In other words,

Nash equilibria occur where the best response functions of

players cross. Therefore, the Nash equilibria of GAC

are given as pairs of ðrp;bVTÞ that satisfies the equation

Cp
r ¼ JbVT;

2k 21 · · · 21

21 2k · · · 21

..

. ..
. . .

. ..
.

21 21 · · · 2k

2
6664

3
7775

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
C[Rðkþ1Þ£ðkþ1Þ

rp
I1

rp
I2

..

.

rp
Ikþ1

2
66664

3
77775

|fflffl{zfflffl}
rp[Rkþ1

¼

1þ
j
ðI1 Þ
r

j
ðI1 Þ

R

0

. .
.

0 1þ
j
ðIkþ1Þ

r

j
ðIkþ1Þ

R

2
66664

3
77775

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
J[Rðkþ1Þ£ðkþ1Þ

b
ðI1 Þ

VT

b
ðI2 Þ

VT

..

.

b
ðIkþ1Þ

VT

2
66664

3
77775

|fflffl{zfflffl}
bVT[Rkþ1

ð16Þ

where I j is the j-th element in the index set I ðtÞ:

At the Nash equilibrium of the game GAC; the

relationship between the ðrp;bVTÞ pair is given as

b
ðiÞ
VT¼

j
ðiÞ
R

j
ðiÞ
R þj

ðiÞ
r

2krpi 2
X
j–i

rpj

0
@

1
A

rpi ¼
1

kð2kþ1Þ
ðkþ1Þ 1þ

jðiÞr

j
ðiÞ
R

 !
b
ðiÞ
VT

 

þ
X
j–i

1þ
j
ðjÞ
r

j
ðjÞ
R

 !
b
ðjÞ
VTÞ

8>>>>>>>>>>><
>>>>>>>>>>>:

i;j[I ðtÞ ð17Þ

By substituting Eq. (17) into Eq. (13), the payoff pNEðtÞ of

the i-th F2 neuron at Nash equilibrium is given as

p
ðiÞ
NE¼kjðiÞR ðrpi Þ

2þAðaVT;aMST;bMST;j
ðiÞ
R ;jðiÞr ;j

ðiÞ
f Þ ð18Þ

The one-to-one correspondence between the vectors rp and

bVT at the Nash equilibrium of the game GAC is obtained.

Every F2 neuron eagers to gain as much payoff pðiÞ
NE as

possible in the competition for being in the RESONANCE

state by tuning its rpi to 1 during categorization. However,

it is not economical because the total energy supplied by

all F2 neurons in categorization process is not minimized

so that all F2 will eventually change their vigilance

parameters to the extreme values.2 Vigilance parameters

are adapted so that minimum energy is consumed by the F2

neurons so as to overcome the potential barrier in

becoming the winning F2 neuron during the categorization

of data patterns.

The potential barrierPi of avoiding the ith F2 neuron from

becoming a winning neuron (ie. in RESONANCE state) is

defined as

Pi W ð1 2 j
ðiÞ
R Þrpi ð19Þ

Intuitively, the potential barrier increases with increasing

vigilance parameter and the state probability j
ðiÞ
R indicates

the degree of easiness for the F2 neuron to overcome

2 This argument is analogous to the ‘principle of least action’ hypothesis

proposed by Pierre–Louis Moreau de Maupertuis (1698–1759) in the field

of analytical dynamics (Williams, 1996).
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the potential barrier. jðiÞR introduces an inhibitory effect on the

F2 neuron RESONANCE state potential barrier.

On the other hand, the ‘kinetic’ energy of the ith F2 neuron

measures the capability of the i-th F2 neuron to have the

current data pattern being categorized into the ith cluster. The

‘kinetic’ energy of the ith neuron can then be reflected by

the payoff gained p
ðiÞ
NE of the ith F2 neuron at the Nash

equilibrium of the adaptive categorization game GAC (with

vigilance parameter rpi ) in the data pattern competition. In

other words, the more ‘kinetic’ energy the F2 neuron releases

in competition, the more the payoff it will gain, and vice

versa. Therefore, the ‘kinetic’ energy of the ith F2 neuron is

defined as Ki W kjðiÞR ðrpi Þ
2 þAi; where Ai is the shorthand

for the term that is independent of rpi in the expression for F2

neuron payoff gain p
ðiÞ
NE at Nash equilibrium. The difference

between Ki and Pi is minimized subject to vigilance

parameters of F2 neurons, rpi i [ I ðtÞ; so that the F2 neurons

can consume the minimal energy to overcome the potential

barriers in the next pattern presentation.

By defining the Lagrangian Li for each F2 neuron, i [
I ðtÞ; as

Li W Ki 2 Pi ¼ kjðiÞR ðrpi Þ
2 2 ð1 2 j

ðiÞ
R Þrpi þAi ð20Þ

the updated vigilance parameter, rpi is given by setting

ð›Li=›r
p
i Þ ¼ 0: Then the vigilance parameter for the i-th F2

neuron at the tth pattern presentation is updated as

rpi ðtÞ ¼

1 2 j
ðiÞ
R

2kjðiÞR

; if jðiÞR .
1

2k þ 1

rpi ðt 2 1Þ; otherwise

8>><
>>: ð21Þ

where i [ I ðtÞ: The condition imposed in the vigilance

parameters update law is to restrict each rpi to lie in its

nominal range ð0; 1Þ:

Algorithm 1. Adaptive categorization GAC for ART
networks.

1. Initialization for traditional ART networks (Carpenter

& Grossberg, 1987a; Carpenter et al., 1991a),

2. Arbitrary set vigilance parameters ri; learning rate a

and b for learning automata LðiÞ
AC for each F2 neuron.

3. State probabilities initialization for each F2 neuron,

ju ˆ
1
3
; su [ {R; r; f}

4. State transition probabilities initialization for each F2

neurons pðiÞ
uv ˆ

1
3
; su; sv [ {R; r; f}

5. t ˆ 0

6. while there is data pattern being fed into the network

do

7. Perform the traditional categorization pro-

cedure of ART networks (Carpenter & Gross-

berg, 1987a),

8. Compute the confirmatory state transition

probabilities qðiÞ
vu (Eq. (8))

9. Assign reinforcement signal uðiÞ for each F2

neuron according to Eq. (9).

10. Update state probabilities juðiÞ ; su [ S based

on the reinforcement scheme R see Eq. (12)

11. Update state transition probabilities pððiÞÞ
uv

based on Bayes Theorem.

12. Update vigilance parameters by Eq. (21).

13. t ˆ t þ 1

14. end while

3.4. Repeated game analysis on the game gAC

The performance of ART networks with the

game-theoretic adaptive categorization algorithm as t !

1 is investigated. The analysis focuses on asymptotic

behavior of the game GAC operating in a stationary

environment. Since the dynamics of the game GAC is

governed by the learning automaton LAC; we study the

asymptotic behavior of GAC for each F2 neuron through

analyzing the behavior of the associated learning automata

LðiÞ
AC i ¼ 1; 2;…; n with reinforcement scheme R given in

Eq. (12). Theoretically, a variable structure learning

automaton in a stationary environment can be considered

as a discrete Markov process {jðtÞ}t$0 [ X (White, 1993)

with dynamics described by the reinforcement scheme in

Eq. (12). Only characteristics of the game GAC is listed

in the followings and proofs of these properties are listed in

Appendix A.

(1) The proposed reinforcement scheme (12) or

the Markov process {jðtÞ}t.0 is strictly distance

diminishing.

(2) The Markov process {jðtÞ}t.0 has absorbing state

with probability 1 if and only if b ¼ 0: This implies

that F2 neurons will stay in one of the states in S

asymptotically and this leads to fixed categorization

whatever data patterns are passed to the ART

networks in a long run. Hence, all data patterns are

categorized to a fixed category (F2 neuron) asymp-

totically if b ¼ 0: The probability of converging to a

particular state (convergence probability) and rate of

convergence of each F2 neuron depends on its initial

state probability jð0Þ (Narendra & Thathachar,

1989). This describes the so-called ‘reputation effect’

of the adaptive categorization game GAC when the

game is played repeatedly (Fudenberg & Tirole,

1991).

(3) The Markov process {jðtÞ}t.0 is ergodic and has a

limiting expected state probability j W limt!1 E½jðtÞ�

if and only if b – 0: The asymptotic state probability

depends only on the unknown environment

characteristics called reward strength, xu [ ð21; 1Þ

for each state su [ S; which is defined as xu W

E½uðtÞlsðtÞ ¼ su�: If the reward strength xu for state su

is larger than that of any other state sv; then state su

is chosen asymptotically with a higher probability

than any other states sv on average.
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(4) It is worth to be noted that the learning automaton

LAC demonstrates bifurcation phenomenon on b

based on the previous two properties. The learning

automaton LAC exhibits distinct system behaviors in

the cases of b ¼ 0 and b – 0:

(5) If b – 0; the learning automaton LAC is expedient, i.e.

limt!1 E½MðtÞ� . M0; where MðtÞ W E½uðtÞljðtÞ� ¼P
su[S xujuðtÞ and M0 ¼ ðxR þ xr þ xfÞ=3 is the norm

of behavior for pure-chance automaton (Narendra &

Thathachar, 1989). The learning automaton LAC is

absolutely expedient if and only if b ¼ 0: It is also e-

optimal in all stationary environment when b ¼ 0 as

absolutely expediency implies e-optimality under all

stationary environment (Narendra & Thathachar,

1989). This implies that the learning automaton LAC

can learn as it outperforms its pure-chance

automaton counterpart) as it is expedient (even

absolutely expedient when b ¼ 0) for all the possible

value of b.

(6) To sum up, the rule of thumb of parameter selection in

reinforcement scheme derivation is that 0 , a , 1; 0 ,

b , 1 and small b so that the adaptive

categorization game GAC can track the changing

environment (when b – 0) while being

relatively stable with limiting state (when b ¼ 0). The

limiting state indicates what it has learned

about the characteristics of the environment. Moreover,

the expected vigilance parameters of the game GAC will

also converge as the reinforcement scheme is ergodic

and the formation of the updated vigilance parameters

involves state probabilities (Eq. (16)).

3.5. Simulations

Simulations results are presented to compare the

performances of Fuzzy ART networks (Carpenter et al.,

1991a) with and without using the proposed game-theoretic

r adaptation. Fuzzy ART network is selected for

simulations because it is simple and it provides wide input

pattern diversity (both binary and analog data patterns).

Learning rates in the reinforcement scheme are set as

a ¼ 0:75 and b ¼ 0:1:

Two simulations with different data patterns distributions

are presented as follows,

(1) Two thousand uniformly distributed random two-

dimensional data patterns, which are confined in a

‘ring-like’ region centered at ð0:45; 0:52Þ and with

inner and outer radii of 0.15 and 0.405, respectively,

are generated for simulations. Tests on Fuzzy ART

networks with and without r-adaptation are

performed with starting vigilance parameters at 0.4,

0.55, 0.7 and 0.85. The Fuzzy ART learning rates

employed in all tests are set to 0.9 and the

pattern order in all tests are the same. Fig. 4 depicts

the categorization results in the tests. The number

of categories formed in the tests are listed as in

Table 1,

Fig. 4. Categorization of uniformly distributed data patterns in a ‘ring-like’ region by Fuzzy ART networks with (lower row) and without (upper row)

r-adaptation.

W.-k. Fung, Y.-h. Liu / Neural Networks 16 (2003) 1403–1420 1411



(2) Two thousand uniformly distributed random two-

dimensional data patterns, which are confined in

a pair of disjoint distributions, are generated for

simulations. The data patterns are confined either

in a circular region centered at ð0:710; 0:305Þ with

radius 0.27 or a triangular regions with vertices at

ð0:08; 0:49Þ; ð0:28; 0:96Þ and ð0:87; 0:85Þ; respect-

ively. Tests on Fuzzy ART networks with and

without r-adaptation are performed with starting

vigilance parameters at 0.4, 0.55, 0.7 and 0.85.

The Fuzzy ART learning rates employed in all

tests are set to 0.9 and the pattern order in all

tests are the same. Fig. 5 depicts the categoriz-

ation results in the tests. The number of

categories formed in the tests are listed as in

Table 2.

As shown in Figs. 4 and 5, the Fuzzy ART prototypes

(Carpenter et al., 1991a) generated are displayed as

rectangles. The prototype rectangles generated by Fuzzy

ART without r-adaptation render the pattern distribution

boundary poorly, especially for lower fixed vigilance

parameters. On the other hand, the prototype rectangles

generated by Fuzzy ART with r-adaptation render the

pattern distribution boundary well no matter what value

the starting vigilance parameter is. Moreover, the number

of categories generated by Fuzzy ART without r-

adaptation grows geometrically with increasing starting

vigilance parameters while the number of categories

generated by Fuzzy ART with r-adaptation is much

insensitive to the starting vigilance parameter chosen.

Thus r-adaptation remedies the difficulties in choosing

vigilance parameters prior to the data clustering process

using ART networks. The updated vigilance parameters

converge to similar values with different starting

vigilance parameters after the 2000 data patterns

categorization. In additions, as demonstrated in Simu-

lation 2 (with patterns generated from disjoint distri-

butions), the categories generated by Fuzzy ART with r-

adaptation cover far less patterns from either of the

disjoint distributions than that generated by conventional

Fuzzy ART network, as shown in Fig. 5. The categories

generated by r-adaptive Fuzzy ART network can even be

divided into two distinct groups that contain patterns

from one and only one distribution when the starting

Table 1

Categories number formed in all tests on a set uniformly distributed 2D data

patterns in a ‘ring-like’ region

Starting r

0.40 0.55 0.70 0.85

Non-adaptive r 5 7 13 47

Adaptive r 83 99 101 107

Final r 0.882 0.883 0.886 0.886

Fig. 5. Categorization of uniformly distributed data patterns in a pair of disjoint triangular and circular regions by Fuzzy ART networks with (lower row) and

without (upper row) r-adaptation.
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vigilance parameter is 0.85. This helps to avoid

misclassification in classifier systems that are constructed

from Fuzzy ART networks.

4. Robot behavior learning

A robot behavior can be considered as a mapping

from the perceptual space or sensor data space S to the

action space A; E : S !A; called a sensorimotor map

(Fung & Liu, 1998). Sensor data space or perceptual

space S is constructed from all sensors modalities

installed on the robot while action space A is

constructed from robot actuators output that are under

control. The goal of behavior learning is then to

construct the aforementioned sensorimotor maps for

various robot behaviors. All inputs for this learning

task are in a form of data patterns consisting of

consecutive samples from sensors and actuators equipped

on robots. Typical sensors involved in behavior learning

include ultrasonic range sensors, tactile sensors,

vision sensors and so on.

Since the sensor domain S and action domain A are

high-dimensional and continuous spaces, it is difficult to

construct the whole sensorimotor map for each particular

situation and action pair from finite sets of training data

patterns. In order to approximate this sensorimotor map,

the sensor domain S and action domain A are divided

into several categories (clusters) and mapping between

the categories on the two domains can be constructed.

Within each category, situations (or actions) are similar

in nature. It is assumed that similar situations (stimuli)

invokes similar actions. This simplifies the construction

of sensorimotor map for particular behavior from a high

dimensional, nonlinear and discontinuous mapping to a

set of simple category mappings, from a particular

situation category s ~, S to action category a ~, A3

(Fung & Liu, 1998). Biological evidenceof the categor-

ization of situation and action spaces can be found

inanimals (for example, African Grey Parrot (Perrberg,

1996) and humans (Massaro, 1990). This indicates that

generalization on stimuli (situations) occurs within

category while discrimination occurs among categories.

Psychologists have been conducting numerous exper-

iments to indicate the presence of stimulus generalization

and are recorded in various psychological literatures on

behavior and learning (Walker, 1995).

4.1. The BLOM architecture

Based on the sensorimotor map model of a behavior,

a generic neuralnetwork based architecture for

robot behavior learning, which iscalled the Behavior

Learning/Operating Modular (BLOM) Architecture,

isemployed to reconstruct an individual robot behavior

(Fung & Liu, 1998). This architecture incorporates both the

learning and operating modesin the same structure.

The advantage of incorporating the learning and operating

modes in the same structure is that the effort and loss of

information in the transformation between the

representations of knowledge in individual learning and

operating modules are saved. The BLOM architecture,

which is shown in Fig. 6, consists of two groups of

categorization networks (implemented by Fuzzy

ARTnetworks (Carpenter et al., 1991a)) connected by a

set of associative memories (implemented by fuzzy

associative memories FAM (Kosko, 1992)). The perceptual

and action categorization networks, which are denoted as

CNS and CNA; respectively, are responsible for

categorization of input sensor data patterns (S-patterns)

and action patterns (A-pattern) individually. Each

categorization network is assigned to categorize one

dimension of data patterns. There is also a coding layer,

which is made of a categorization network CNC; for

perceptual code (S-code) compactification and distribution.

The associative memory are for association establishments

between perceptual and action categories. Action memories

(implemented by OLAM (Kohonen, 1989)) are employed

to store prototypical action patterns for each action category

in order to reconstruct appropriate actions to control the

robot in operating mode.

The main function of categorization networks is to

categorize input S-patterns and A-patterns into S-categories

and A-categories, respectively, for sensorimotor categorical

mappings formation. Fuzzy ART network (Carpenter et al.,

1991aa) is chosen to realize categorization networks in the

BLOM architecture. The reason for choosing ART network

to realize categorization networks is that they solve the

Stability–Plasticity Dilemma which is faced by other

categorizing and learning systems (Carpenter & Grossberg,

1987a). The learned categorization codes are stable to resist

the erosion of irrelevant data while sensitive to novel data.

These features allow ART networks to be a successful

candidate for incremental categorization learning networks,

which is an important property of on-line robot learning.

Other neural network architectures designed specifically for

classification or clustering, like LVQ (Kohonen, 1995),

and statistical clustering techniques are either supervised in

Table 2

Categories number formed in all tests on a set uniformly distributed 2D data

patterns in a pair of disjoint regions

Starting r

0.40 0.55 0.70 0.85

Non-adaptive r 4 8 14 43

Adaptive r 74 71 73 73

Final r 0.874 0.874 0.874 0.874

3 a ~, S is defined as that a is a category or cluster in A.
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nature or not suitable for incremental learning.

Moreover, the granularity of the clusters (categories)

formed by ART networks can be controlled by vigilance

parameter. The proposed adaptive categorization

mechanism basically adjusts the vigilance parameters of

the F2 neurons to control the granularity of the categories

formed automatically. As shown in the simulations in

Section 3.5, the proposed game-theoretic adaptive

categorization for ART networks improve the category

number stability of ART networks and thus solve the

problem of initial vigilance parameter prior to pattern

categorization in traditional ART networks for robot

behavior learning using the BLOM architecture.

The selection of initial vigilance parameters for ART

networks depends heavily on the distribution and other

characteristics of the population of the patterns for

categorization, which are unknown a priori.

Extensive experiments have to be conducted to determine

the suitable vigilance parameter for pattern categorization in

trial-and-error basis before launching the ART networks

for practical uses. With the introduction of adaptive

categorization mechanism to ART networks in the BLOM

architecture, the initial vigilance parameters can be

arbitrarily set and allow the networks adapt to the patterns

encountered in real-time. The adaptive categorization

mechanism also effectively suppress the unnecessary

granularity of categories formed in categorization in the

cases with high vigilance parameters. The adaptive

categorization mechanism place the balance well between

the stability and plasticity of categorization networks.

Therefore, the need of memory and computational power

increase drastically during robot behavior learning if

the adaptive categorization mechanism is not activated in

the ART networks in the BLOM architecture. On the other

hand, the adaptive categorization mechanism of ART

networks can maintain slow increases of categories formed,

and thus the need of memory and computational power

during behavior learning without sacrificing the learning

performance of the BLOM architecture. In additions, Fuzzy

ART network can handle both binary and analog input

patterns so that flexibility in data pattern encoding for

behavior learning is enhanced.

4.2. Behavior learning experiments

Robot behavior learning experiments are conducted

with a RWI B21 mobile robot using the BLOM

architecture. Fig. 7 depicts a picture of the B21 mobile

robot. The robot can perform holonomic motion so that

motion planning for the robot is simplified. There are 24

ultrasonic range sensors, together with 56 infra-red

sensors and 56 tactile switches, installed evenly on

Fig. 6. The BLOM Architecture.
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the peripheral of the robot. The robot is also equipped

with a stereo vision system. In the experiment, the

mobile robot is employed to learn the Wall-following

behavior from scratch. The Wall-following behavior

guides a robot to move along a wall or boundary of

objects in an environment while keeping a certain fixed

distance from the wall or objects. Behavior learning is

conducted in the logical perceptual space, which is

extracted from the physical perceptual space of the robot

using factor analysis (Fung & Liu, 2000). The logical

perceptual space can be described by the measurement

model extracted by factor analysis. The sensor data

patterns, or S-patterns, involved in the experiments are

constructed from 24 ultrasonic range data and its four

time history values returned from the robot, which is the

physical perceptual space S: The physical perceptual

space is thus a 24D space and 11 latent factors can be

extracted out of the physical perceptual space (Fung &

Liu, 2000). Thus, there are 11 Fuzzy ART networks for

S-patterns categorization with logical perceptual space

training as each dimension of the logical perceptual

space is associated with one Fuzzy ART network. Each

Fuzzy ART network has 5D input patterns for categor-

ization (current value plus its previous values at four

consecutive time instances). On the other hand, the

action patterns, or A-patterns, are constructed from the

translational and rotational velocities of the robot and

there are two Fuzzy ART networks, OLAM for

A-patterns categorization and Action Memory in the

BLOM architecture. Each ART network in the action

side also has 5D A-patterns as input.

The experiments conducted can be divided into two

phases, namely the Learning phase and Operating phase.

In the Learning phase, human operator controls the B21

robot to exhibit the ‘Wall-following’ behavior that the

robot is going to learn in training environments using the

developed Tele-Assisted Teaching System (TATS),

as shown in Fig. 8. TATS is a software for sensor-action

pattern pairs acquisition for robot behavior learning with

the proposed BLOM architecture. TATS acts as a human–

robot interface that provides online sensory feedback

visually to human operator for controlling robot motion.

The online sensory feedback include local sonar map and

images captured from the cameras equipped on the robot.

This teaching system allows human ‘teacher’ to guide

the motion of the mobile robot (A-patterns) by observing

different sensor sources, including sonar range data and

captured images (S-patterns). During ‘teaching’ the robot

Fig. 8. Screenshot of the Tele-Assisted Teaching System (TATS).

Fig. 7. The RWI B21 mobile robot employed in the experiments.
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with the TATS, S-patterns and A-patterns pairs are

acquired and saved by the TATS. The robot is taught to

follow the left wall and keep a fixed distance of about

20 cm from the wall or any object boundary in the

corridors of the 4/F of Mong Man Wai Building, as shown

in Figs. 9 and 10. Teaching lessons are repeated with

different starting situations and environments until enough

training patterns have been collected. There are 12,573

pairs of S-patterns and A-patterns collected in the training

environments. Logical S-patterns are first generated from

physical S-patterns and the measurement model obtained

from Factor Analysis (Fung & Liu, 2000). Sensor (logical)

and action training pattern pairs are then fed to the

BLOM architecture to learn the ‘Wall-following’ behavior.

Table 3 lists the number of categories (F2 neurons) formed

in the Fuzzy ART network of the BLOM architecture

during robot behavior learning with and without applying

the proposed vigilance parameter adaptation mechanism.

The vigilance parameters of the Fuzzy ART networks are

fixed at 0.87 when r-adaptation is not employed in robot

behavior learning while the initial vigilance parameters of

Fuzzy ART networks is set at 0.8 when r-adaptation is

employed in robot behavior learning. As shown in Table 3,

the number of categories formed in the Fuzzy ART

networks with r-adaptation are less than one-fifth of the

case when r-adaptation is not employed in pattern

categorization for robot behavior learning and thus the

effectiveness of the proposed game-theoretic adaptive

categorization mechanism for ART networks is

demonstrated.

After learning, the B21 robot is situated in novel

environments and tested whether it can demonstrate the

learned ‘Wall-following’ behavior in the Operating

phase. The learned BLOM architecture is then set up

in operating mode and it drives robot motion to operate

in the novel environment to demonstrate the learned

behavior. The input physical S-patterns are first trans-

formed into corresponding logical S-patterns based on the

measurement model for the BLOM architecture in

operating mode. The robot is then tested to perform

wall-following in the long and straight corridor outside

MMW 410 and MMW 411. Fig. 11 depicts the trajectory

of the robot guided by BLOM architecture learned

with logical perceptual space and the map built when

the robot performs wall-following. The robot follows the

left wall in the corridor but the distance from the wall

cannot be kept to a similar value to that of trained.

Fig. 9. A sketch of the corridor environment.

Fig. 10. Photos of the corridor environment.

Table 3

Number of categories (two neurons) formed in Fuzzy ART (FART) networks after robot behavior learning in the logical perceptual dimension using the BLOM

architecture

FARTi 1 2 3 4 5 6 7 8 9 10 11

w/r-adj. 487 515 508 542 458 602 572 496 531 576 553

w/o r-adj. 2783 2917 3069 2982 2906 3185 2684 2843 2939 2760 2883
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The robot is then tested to perform wall-following in the

4/F lift lobby of Mong Man Wai Building, as shown in

Figs. 12 and 13. Fig. 14 depicts the trajectory of the

robot guided by BLOM architecture learned with logical

perceptual space and the map built when the robot

performs wall-following. The robot starts at the open free

region in the lift lobby and they perform wall-following

in different parts of the lift lobby.

5. Conclusions

This paper proposed a mathematical formulation of

adaptive categorization of ART networks based on the

game theory for robot behavior learning. We have derived

the game-theoretic model GAC for competitive processes of

clustering of ART networks and an update rule for vigilance

parameters using the concept of learning automata. Numbers

of clusters generated by ART adaptive categorization are

similar regardless of the initial vigilance parameters r

assigned to the ART networks. The r-adaptation, thus,

helps to solve the difficult problem of choosing suitable

vigilance parameter prior to data categorization process and

ease the design of BLOM architecture. Moreover, the

coverage of clusters generated by ART networks with r-

adaptation can reflect the shape of pattern distribution and

thus prevent misclassification in classifiers constructed with

ART networks. This phenomenon can sometimes be

achieved by fixed high r in ART networks while ART

networks with r-adaptation can achieve the same results even

Fig. 14. Wall-following in Lift lobby.

Fig. 12. A sketch of the lift lobby.

Fig. 11. Wall-following in Corridor-like environment.

Fig. 13. Photos of the lift lobby.
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with low initial vigilance parameter. The proposed ART

adaptive categorization mechanism can also avoid the

problem of choosing suitable vigilance parameter a priori

for pattern categorization. We also perform a repeated game

analysis on the game GAC by investigating the asymptotic

behaviors of the update law for state probabilities and hence

vigilance parameters. Several clustering experiments

demonstrated that game-theoretic vigilance parameter adap-

tation can improve the clustering performance of ART

networks in the aspect of category number stability. The

stability of category number formed by ART categorization

helps the architectural design of BLOM architecture. Robot

behavior learning experiments are also conducted to

demonstrate the effectiveness of the proposed adaptive

categorization mechanism.
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Appendix

This section presents the proofs of the properties of the

proposed adaptive categorization algorithm.

Lemma 1. The proposed reinforcement scheme (12) or

the Markov process {jðtÞ}t.0 is strictly distance dimin-

ishing.

Proof. Consider any two starting values of juðtÞ; namely p1

and p2; and their corresponding value of juðt þ 1Þ as p0
1 and

p0
2; respectively. From Eq. (12), we have

p02p¼
2 1

2
að1þuÞpþ 1

2
bð12uÞð 1

2
2pÞ if sðtÞ–su

1
2
að1þuÞð12pÞ2 1

2
bð12uÞp if sðtÞ¼su

(

with p[{p1;p2} and

kp0
12p0

2k¼ 12
aþb

2
2

uða2bÞ

2

� �
kp12p2k:

This implies that kp0
12p0

2k, kp12p2k for u[{21;0;1}

and 0,a,1; 0,b,1 and hence {jðtÞ}t.0 is strictly

distance diminishing. A

Lemma 2. The Markov process {jðtÞ}t.0 has absorbing

state with probability 1 if and only if b ¼ 0:

Proof. (1) Sufficiency. If b ¼ 0; the reinforcement scheme

becomes

juðt þ 1Þ ¼
juðtÞ2

1
2

að1 þ uÞjuðtÞ; if sðtÞ – su

juðtÞ þ
1
2

að1 þ uÞð1 2 juðtÞ if sðtÞ ¼ su

(

By setting

juðt þ 1Þ ¼ juðtÞ;

we have

juðtÞ ¼ 0; if sðtÞ – su

juðtÞ ¼ 1 if sðtÞ ¼ su

(

which is an absorbing state with probability 1 or state

probability vector limt!1 jðtÞ is a unit vector.

(2) Necessity. If juðt þ 1Þ ¼ juðtÞ; we have

juðtÞ ¼
ð1=2Þbð1 2 uÞ

að1 þ uÞ þ bð1 2 uÞ
¼ 0 if sðtÞ – su

juðtÞ ¼
að1 þ uÞ

að1 þ uÞ þ bð1 2 uÞ
¼ 1 if sðtÞ ¼ su

8>>><
>>>:
because ju can decrease only when sv because ju can

decrease only when svð– suÞ is selected, which results in a

favorable response u ¼ 1; and juðt
0Þ is an unit vector if jðtÞ

is a unit vector ;t0 . t: This implies b ¼ 0:

Lemma 3. The Markov process {jðtÞ}t.0 is ergodic and has

a limiting expected state probability jp W limt!1 E½jðtÞ�

if and only if b – 0:

Proof. Let the environment characteristics be defined by the

probabilities of uðtÞ [ { 2 1; 0; 1} for states sðtÞ [ S;

ProbðuðtÞ ¼ 21lsðtÞ ¼ suÞ ¼ fu; 0 , fu , 1

ProbðuðtÞ ¼ 0lsðtÞ ¼ suÞ ¼ cu; 0 , cu , 1

ProbðuðtÞ¼1lsðtÞ¼suÞ¼12fu2cu; 0,fuþcu ,1

(1) Sufficiency. In order to study the asymptotic behavior of

{jðtÞ}t.0; we first investigate the conditional expectation of

jðtþ1Þ given jðtÞ: If b–0; we have

DjuðtÞWE½juðtþ1Þ2juðtÞljðtÞ�

¼juðtÞ
X

sv–su

�
ð12fu2cuÞgvðjðtÞÞ2fuhvðjðtÞÞ

þ
cu

2
½gvðjðtÞÞ2hvðjðtÞÞ�

�
2

X
sv–su

jvðtÞ

�
ð12fv2cvÞ

�guðjðtÞÞ2fvhuðjðtÞÞþ
cv

2
½guðjðtÞÞ2huðjðtÞÞ�

�

¼2b

�
fuþ

cu

2

�
juðtÞþ

b

2

�
fuþ

cu

2

� X
sv–su

jvðtÞ ðA1Þ
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Taking expectation on both sides, we have

E½juðtþ1Þ�¼ 12b fuþ
cu

2

� �� �
E½juðtÞ�þ

b

2
fuþ

cu

2

� �
£
X

sv–su

E½jvðtÞ� ðA2Þ

Combining equations with the form of Eq. (A2) for su[S;

we have E½jðtþ1Þ�¼CTE½jðtÞ�; where C[R3£3 and

cuu¼12b fuþ
cu

2

� �

cuv¼
b

2
fuþ

cu

2

� �
8>>><
>>>: wheresv–su

Since cuv[ð0;1Þ; ;su; sv[S and
P

su[Scuv¼1; C is

hence a stochastic matrix and all of its eigenvalues lie on

or inside the unit circle. Therefore, the Markov process

{jðtÞ}t.0 is ergodic and the equilibrium point of the

system is asymptotically stable. The ergodicity also

implies that E½jðtÞ� has limiting value as t!1 which

is independent of the initial state probability jð0Þ: The

limiting state probability jp is the solution of jp¼CTjp

satisfying the
P

su[Sj
p
u¼1 constraint and is given as

jpu¼ lim
t!1

E½juðtÞ�¼

1

fuþcu=2X
sv[S

1

fvþcv=2

; wheresu[S ðA3Þ

(2) Necessity. Suppose b¼0; the limiting expected state

probability is an unit vector according to Lemma 2.

Sinced {jðtÞ}t.0 is ergodic, we have jpu¼1 and jpv ¼0 for

sv–su: With Eq. (A3), this implies a contradiction,

which states that
P

sv–su

1

fvþ
cv

2

¼0 or fvþ
cv

2
¼

2
 
fwþ

cw

2

!
,0,;sv; sw–su; as fz; cz.0, ;sz[S:

Therefore, b–0 A

Lemma 4. If b – 0; the learning automaton LAC is

expedient.

Proof. A learning automaton is expedient if limt!1 �

E½MðtÞ� . M0; where MðtÞ W E½uðtÞljðtÞ� ¼
P

su[S xujuðtÞ

and M0 ¼ ðxR þ xr þ xfÞ=3 is the norm of behavior for

pure-chance automaton (Narendra & Thathachar, 1989).

From Lemmas 2 and 3 and since xu [ ð21; 1Þ ;su [ S;

we have

lim
t!1

E½MðtÞ�¼
X
su[S

xu

12xuX
sv[S

1

12xv

0
BBBB@

1
CCCCA

¼
ðxRþxrþxfÞ22ðxRxrþxRxfþxrxfÞþ3xRxrxf

322ðxRþxrþxfÞþðxRxrþxRxfþxrxfÞ

.
xRþxrþxf

3
ðA4Þ

A

Lemma 5. The learning automaton LAC is absolutely

expedient if and only if b ¼ 0:

Proof. A learning automaton is absolutely expedient if and

only if all ratios ðguðjÞÞ=ju are equal and all ratios ðhuðjÞÞ=ju

are equal ;su [ S (Narendra & Thathachar, 1989).

From the proposed reinforcement scheme, the only solution

that satisfies the above conditions is b ¼ 0 such that

ðguðjÞÞ=ju ¼ a and ðhuðjÞÞ=ju ¼ 0, ;su [ S: Hence the

lemma is proved. A
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